您当前位置:网站首页 >考试大纲 >浏览文章

湖南工学院2021年“专升本”选拔考试 《高等数学》课程考试大纲

2021年08月26日

湖南工学院2021年“专升本”选拔考试

《高等数学》课程考试大纲  

一、考试目的与要求

 本门课程考试大纲用于湖南工学院理工科专业“专升本”学生的选拔,命题内容以黄立宏主编《高等数学(上、下)》(北京大学出版社, 2018年7月出版)为主要参考书。考生应按本大纲的要求了解、理解 高等数学中函数、极限和连续、一元函数的导数与微分、定积分、不定积分、一元函数微积分学及其应用、多元函数微积分学及其应用、二重积分的基本概念与基本理论,掌握或者熟练掌握上述各部分的基本方法。应理解各部分知识结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;能综合运用所掌握知识分析并解决简单的实际问题。考试方式为闭卷,考试总分为100分,考试时长为100分钟。

二、考试范围

1、函数

1)理解函数的概念;

2)掌握函数的常用特性及反函数、复合函数和分段函数概念;

    3)掌握基本初等函数及其性质与图形;

    4)了解一般有实际问题背景的函数关系式。

2、极限与连续

1)了解数列及函数极限的定义;

2)掌握极限四则运算法则,并会用其进行极限运算;

3)掌握两个重要极限在极限运算过程中的应用;

4)了解极限存在准则;

5)掌握无穷小、无穷大概念和有关性质,无穷小的比较方法;

6)理解函数连续的概念;

7)了解对间断点的类型的判断;

    8)理解初等函数的连续性和闭区间上连续函数性质。

 3、导数与微分

1)理解导数与微分概念、导数与微分概念的几何意义;

    2)掌握导数运算法则、求导基本公式;

    3)理解高阶导数概念,掌握计算初等函数的一、二阶导数的计算;

    4)理解微分运算法则,能计算一阶微分。

4、微分中值定理与导数的应用

1)理解罗尔定理、拉格朗日中值定理;

2)掌握洛必达法则;

3)掌握利用导数判断函数单调性的方法,理解极值概念,掌握求函数极值的方法,会解简单的最值应用问题;

4)了解函数的图形的绘制(凹凸性、拐点、渐近线)。

5、不定积分

1)理解原函数、不定积分的概念。

2)掌握不定积分性质及基本公式;

3)掌握用换元法及分部积分法计算不定积分。

6、定积分

1)理解定积分的概念、性质及几何意义;

2)掌握牛顿--莱布尼兹公式;

3)掌握用换元法及分部积分法计算定积分;

4)理解用微元素法建立积分表达式;

5)掌握用定积分计算平面图形的面积;

7、多元函数微积分

1)了解空间直角坐标系和空间点的直角坐标;

2)理解多元函数的概念;

3)了解二元函数的极限、连续的概念;

4)理解偏导数、全微分的概念;

5)掌握偏导数的计算;

6)掌握多元复合函数的微分法;

7)理解二重积分的概念,了解二重积分的性质;

8)掌握直角坐标系下二重积分的计算方法。

    三、命题要求  

题型体现多样化、层次化的特点,考核内容重点突出,覆盖面广,最基本的知识占60%左右,稍微灵活一点的题目占30%左右,较难的题目占10%左右。试卷、试题答案及评分细则准确、规范。

    四、试卷结构及主要题型

1.试卷内容参考结构

基本题60%左右,综合题30%左右,提高题10%左右。   

2.参考题型

填空题25%左右,选择题25%左右, 计算题30%左右,应用题10%左右,综合题10%左右。

五、参考书

[1] 黄立宏. 高等数学(上). 北京: 北京大学出版社, 2018.7.

[2] 黄立宏. 高等数学(下). 北京: 北京大学出版社, 2018.7.


最新推荐
考试大纲
录取名单
统招专升本,免费领取资料+课程优惠隐私声明:网站属于教育部门批准的正规学历授权中心,请放心提交您的信息